Telegram Group & Telegram Channel
🚀 Как Duolingo ускорил микросервисы на 40% с помощью асинхронного Python 🐍

Duolingo рассказали, как им удалось значительно повысить производительность своих Python-сервисов, переведя их на async/await, и сделали это не ради хайпа, а ради экономии.

💸 Мотивация: производительность и снижение затрат
Duolingo работает с большим количеством микросервисов, обрабатывающих огромные объёмы трафика. Несмотря на высокую нагрузку, многие их Python-сервисы простаивали в ожидании I/O — например, сетевых запросов или операций с базой данных. Это означало неэффективное использование CPU, а значит — деньги на облачный хостинг тратились зря.

Асинхронный код — способ “переключаться” между задачами во время ожидания, используя CPU с большей отдачей. Именно это стало главной мотивацией: не “просто быть async”, а снизить расходы.

⚙️ Как проходила миграция
Процесс был постепенным и продуманным. Ниже ключевые шаги:

Переход не “всё или ничего”
Команда не бросалась переписывать весь сервис с нуля. Они начали с конвертации отдельных маршрутов (routes) на async def, добавляя поддержку асинхронности по частям.

Инструменты постепенно адаптировали
Библиотеки и инструменты внутри компании пришлось обновить:
свой HTTP-клиент переписали под aiohttp,
систему аутентификации сделали совместимой с async-контекстами,
логирование, трассировка и метрики обновили под async-архитектуру.

Тесты и инфраструктура
Асинхронные изменения требовали пересмотра тестов. Они внедрили поддержку pytest-asyncio и переосмыслили подход к мокам и фикстурам.

Запуск в проде — поэтапно
Сначала маршруты работали в синхронном режиме. Потом их перевели в async-режим и замерили разницу. Так удалось отловить “узкие места” до массового внедрения.

📈 Результаты: +40% производительности на инстанс
У каждого экземпляра микросервиса CPU начал использоваться эффективнее.
Снизилось среднее время ответа (latency).
Уменьшилось количество необходимых инстансов — экономия в $$$.
Код стал удобнее масштабировать и поддерживать в I/O-интенсивной среде.

Пока один запрос “ждёт”, процессор может выполнять другие задачи.

🔍 Выводы
Duolingo подчёркивает:
асинхронность не нужна “просто потому что модно”.
Но если у вас сервис с большим числом I/O-операций и важна производительность — async Python может дать реальный прирост и экономию.

Оригинальный пост

@pythonl



tg-me.com/pythonl/4731
Create:
Last Update:

🚀 Как Duolingo ускорил микросервисы на 40% с помощью асинхронного Python 🐍

Duolingo рассказали, как им удалось значительно повысить производительность своих Python-сервисов, переведя их на async/await, и сделали это не ради хайпа, а ради экономии.

💸 Мотивация: производительность и снижение затрат
Duolingo работает с большим количеством микросервисов, обрабатывающих огромные объёмы трафика. Несмотря на высокую нагрузку, многие их Python-сервисы простаивали в ожидании I/O — например, сетевых запросов или операций с базой данных. Это означало неэффективное использование CPU, а значит — деньги на облачный хостинг тратились зря.

Асинхронный код — способ “переключаться” между задачами во время ожидания, используя CPU с большей отдачей. Именно это стало главной мотивацией: не “просто быть async”, а снизить расходы.

⚙️ Как проходила миграция
Процесс был постепенным и продуманным. Ниже ключевые шаги:

Переход не “всё или ничего”
Команда не бросалась переписывать весь сервис с нуля. Они начали с конвертации отдельных маршрутов (routes) на async def, добавляя поддержку асинхронности по частям.

Инструменты постепенно адаптировали
Библиотеки и инструменты внутри компании пришлось обновить:
свой HTTP-клиент переписали под aiohttp,
систему аутентификации сделали совместимой с async-контекстами,
логирование, трассировка и метрики обновили под async-архитектуру.

Тесты и инфраструктура
Асинхронные изменения требовали пересмотра тестов. Они внедрили поддержку pytest-asyncio и переосмыслили подход к мокам и фикстурам.

Запуск в проде — поэтапно
Сначала маршруты работали в синхронном режиме. Потом их перевели в async-режим и замерили разницу. Так удалось отловить “узкие места” до массового внедрения.

📈 Результаты: +40% производительности на инстанс
У каждого экземпляра микросервиса CPU начал использоваться эффективнее.
Снизилось среднее время ответа (latency).
Уменьшилось количество необходимых инстансов — экономия в $$$.
Код стал удобнее масштабировать и поддерживать в I/O-интенсивной среде.

Пока один запрос “ждёт”, процессор может выполнять другие задачи.

🔍 Выводы
Duolingo подчёркивает:
асинхронность не нужна “просто потому что модно”.
Но если у вас сервис с большим числом I/O-операций и важна производительность — async Python может дать реальный прирост и экономию.

Оригинальный пост

@pythonl

BY Python/ django









Share with your friend now:
tg-me.com/pythonl/4731

View MORE
Open in Telegram


Python django Telegram | DID YOU KNOW?

Date: |

Export WhatsApp stickers to Telegram on Android

From the Files app, scroll down to Internal storage, and tap on WhatsApp. Once you’re there, go to Media and then WhatsApp Stickers. Don’t be surprised if you find a large number of files in that folder—it holds your personal collection of stickers and every one you’ve ever received. Even the bad ones.Tap the three dots in the top right corner of your screen to Select all. If you want to trim the fat and grab only the best of the best, this is the perfect time to do so: choose the ones you want to export by long-pressing one file to activate selection mode, and then tapping on the rest. Once you’re done, hit the Share button (that “less than”-like symbol at the top of your screen). If you have a big collection—more than 500 stickers, for example—it’s possible that nothing will happen when you tap the Share button. Be patient—your phone’s just struggling with a heavy load.On the menu that pops from the bottom of the screen, choose Telegram, and then select the chat named Saved messages. This is a chat only you can see, and it will serve as your sticker bank. Unlike WhatsApp, Telegram doesn’t store your favorite stickers in a quick-access reservoir right beside the typing field, but you’ll be able to snatch them out of your Saved messages chat and forward them to any of your Telegram contacts. This also means you won’t have a quick way to save incoming stickers like you did on WhatsApp, so you’ll have to forward them from one chat to the other.

Python django from ms


Telegram Python/ django
FROM USA